7-HYDROXY (AND ACETOXY)-α-MULLOLENE FROM THE SOFT-CORAL HETEROXENIA FUSCESCENS

Y. KASHMAN*, A. RUDI and N. GUTMAN-NAVEH

Department of Chemistry, Tel-Aviv University, Tel-Aviv, Israel

(Received in UK 18 August 1977; Accepted for publication 10 October 1977)

Abstract—The isolation and structural determination of three cadalane type sesquiterpenes from a soft coral is reported. The ¹³C NMR of these compounds namely (+)- α -murrolene, 7-hydroxy, and 7-acetoxy- α -murrolene is discussed.

In continuation of our earlier studies¹ on the chemistry of soft-corals, we report on the isolation and structure determination of three interrelated sesquiterpenes of the cadalane type from *Heteroxenia fuscescens* (Octocorallia, Alcyonacea, Xeniidae).

Hexane extraction of freeze-dried Heteroxenia fuscescens (and of the aqueous emulsion collected during drying) followed by chromatographic separation resulted in the isolation of three compounds: an hydrocarbon (1) $C_{15}H_{24}$, an alcohol (2) $C_{15}H_{24}O$ and an acetate (3), $C_{17}H_{25}O_2$ in ca. 0.5, 0.8 and 2% dry weight respectively.

Compound 1, $[\alpha]_D = +58^{\circ}$, M⁺ 204 (C₁₅H₂₄, 35%), m/e 189 (M-CH₃, 10%) and 161 (M-iPr, 70%), is the major (>85% hydrocarbon content) hydrocarbon constituent. Its structure was confirmed to be (+)- α -murrolene by its NMR spectrum, δ 0.73d and 0.79d (J = 7 Hz, iPr-Me groups), 1.60 brs (two vinyl Me groups) and 5.35 m (2H); ¹³C NMR (Table 1) and finally unequivocally by the preparation of its dihydrochloride (4).² (+)- α -Murrolene is one out of four possible isomers of the cadalane sesquiterpenes³ and has already been reported to be found in marine gorgonarians.⁴

The second compound to be eluted was the acetate 3. Compound 3 can be converted into alcohol 2 by reduction with LAH. The ¹H NMR spectrum of 3 indicates the existence of two 3-substituted double bonds (-C (Me)C=CH-, δ 1.52 brs 6 H and δ 5.20 m(2 H)) an isopropyl (δ 0.85 and 0.91 d) and a t-acetoxy group (δ 1.95s). These functional groups can be further confirmed by the ¹³C NMR spectrum (Table 1). Dihydroboration of the two double bonds of 3 followed directly by oxidation results in a diketone (5), in which both carbonyls absorb at ν_{max} 1705–1710 cm⁻¹.² Based on this diketone and the above mentioned moieties compound 3 (and 2) is expected to be of the cadalane type.³ Furthermore one of the two double bonds, of 3, must be at Δ^9 (Scheme 1) whereas for the second double bond either the Δ^3 or the Δ^4 position can be considered.

Short hydroboration (1 hr at rt) converts 3 (or 2) to diol 6 in which only one double bond is attacked. A one proton signal adjacent to the incoming OH group is observed in the NMR spectrum of 6 at δ 3.44 as a triplet with a coupling constant of 9 Hz (in addition to the remaining vinylic proton at δ 5.35). A triplet with a

Scheme 1. a, B₆H₆, rt, 1 hr; b, B₂H₆, rt, 24 hr; c, HCl.

coupling constant of 9 Hz is best rationalized by coupling of the corresponding proton with two vicinal, to the OH, α , α' -axial protons. The best place for the OH group, which fulfills the above requirements, is at C-5 as shown by the following partial structure (a):

This means that the second double bond in 3 is at Δ^4 (placing the OH group at C-3, if Δ^3 would have been the location of this double bond, or at C-9, if the Δ^9 double bond would have been the first bond to be hydroborated, should both cause a different NMR pattern of CHOH).

The location of the acetoxy group of 3 (and hence of the OH at 2) has been assigned carbon-7 on the basis of the ¹H NMR spectrum recorded on a 270 MHz NMR instrument; the isopropyl proton signal appears in this spectrum as an heptet at δ 2.16 (J = 7.1 Hz) coupled by the two Me groups only. This finding is also in accordance with LIS experiments performed on 2 and 3 (Tables 1 and 2), as well as the suggested fragmentation pattern for the mass spectra of 2 and 5 (Scheme 2).

The ring fusion stereochemistry of 3 was established next. The ¹³C NMR spectrum, which is known to distinguish between *cis* and *trans* dekalins, is equivocal in this specific case because of the unpredictable influence of the double bonds.[†] Attempts which have been under-

[†]It is well known⁷ that upon introduction of a double bond into a 6-membered ring, the allylic carbons may be slightly shielded or deshielded, while the homoallylic carbons are either strongly shielded or, in some cases, little affected.

Scheme 2.

taken to hydrogenate 3 resulted in mixtures. The ring fusion mode could however be assigned upon the 270 MHz NMR spectrum; almost all of the methylene and methine molecule protons gave rise to separate resonance lines: 1.72 brd (J = 16.5 Hz, 2 H), 1.84 brd (J = 17 Hz, 1 H), 1.99 brd (J = 16.5 Hz, 1 H), 2.16 hep (J = 7.1 Hz, 1 H), 2.34 brd (J = 16.5 Hz, 1 H), 2.37 m ($\Delta W_{1/2}$ = 8 Hz, 1 H), 2.71 dd (J = 5.5 and 17 Hz, 1 H), 3.00 m ($\Delta W_{1/2}$ = 10 Hz, 1 H), and 5.27 m (2 H).

The two relatively narrow signals at δ 2.37 and 3.00

Table 1. ¹³C Chemical shifts^a of compounds 1-3

C atom	multiplicity	1	2	34	LIS of 2"
C-12,13	q	15.9	15.9	17.5	1.9
	-	21.3	17.5	18.5	1.5
C-15	Q	21.5	21.1	20.3	0.7
C-14	q	23.7	24.1	24.0	0.3
C-2°	ī	(24.5)	24.3	24.7	1.1
C-8°	t	(24.6)	28.6	26.7	0.8
C-3*	t	30.4	31.0	31.0	2.9
C-1 ^e	d	39.0	37.9	36.7	1.5
C-6°	đ	26.5	33.3	31.7	. 2.5
C-11°	d	36.6	39.7	40.4	2.2
C-7		41.0d	74.8s	89.28	6.7
C-5.9	d	121.1	119.2	120.0	1.7
-		123.8	119.2	121.0	2.2
C-4,10	3	134.0	134.7	133.3	1.7
	•	135.8	137.2	135.5	1.7

*In ppm from internal TMS in CDCl₃. Parentheses indicate that assignments are not unambiguous.

^bTentative assignment based on model monoterpene compounds,³ substitution effects⁶ (e.g. C-2 should be upfield shifted by a Me₁₅ γ -effect) and the assumption that C-2 and C-3 should be less influenced by the C-7 substitution. Possible conformational mobility complicates the identification.

^cAssignments may be changed—see note b.

COCH₃, 169.9 and 22.3.

*∆8 values for Eu(fod)₃/2 ratio of 0.4.

 $(\Delta W_{1/2} = 8 \text{ Hz} \text{ and } \Delta W_{1/2} = 10 \text{ Hz} \text{ respectively})$ must belong to H-1 and H-6, the only methylene protons which are not part of a geminal pair ($J_{\text{sem}} \simeq 16-18 \text{ Hz}$).

If a *trans*-dekalin skeleton would be incorporated in compound 3 a dihedral angle of *ca.* 180° between H-1 and H-6 should result and consequently, a mutual coupling constant of 8–10 Hz should be measurable. At least H-1 is expected to be further split by the C-2 protons in the order of $J_{H-1/H-2(ax)} \simeq 7-10$ Hz and $J_{H-1/H-2(ax)} \simeq 2-4$ Hz causing a significant broadening of the H-1 signal up to $\Delta W_{1/2} \simeq 17-24$ Hz--which is not the case. The *cis*-fusion, however, does agree with the finding as the $J_{H-1/H-3}$ in this case is expected to be in the order of *ca.* 4–6 Hz only (the corresponding dihedral angle being about 60°).

The last structural feature which has to be accounted for is the stereochemistry at C-7. Each one of the two C-7 isomers (7 α -OR and 7 β -OR, R=H or Ac) can exist in two conformers: A-the conformer in which H-1 is axial towards the more substituted ring and B in which H-1 is equatorial towards this ring-as is known for cis-dekalin. Differentiation between the isomers is achieved by ¹³C NMR and ¹H NMR LIS-measurements (Tables 1 and 2). This leaves us with structures 7α -OR (A) and 7β -OR (B) the NMR spectra of which agree with the above results. However, inspection of Dreiding and CPK models of the isomers reveals that 7β -OR (B) is of low probability because of severe interactions of the axial iPr-group with the less substituted ring. Thus the 7α -OR seems to have the right configuration, namely, compound 3 should be 7acetoxy-a-murrolene (experiments conducted to convert either 2 or 3 into 1 have so far failed).

At last, it is worthwhile to mention the total high percentage of organic material in the *Heteroxenia fuscescens* (8-10% dry weight) which contains mainly a mixture of glycerides and sterols. In contrast to the diversity in terpenoid composition reported for other soft-corals, no significant changes of the organic components with place, depth, and time of collection, could be observed.

Table 2.	LIS	measurements of	compounds	2-3
----------	-----	-----------------	-----------	-----

Proton Comp.	H,	H ₆	H _s	н,	H11	Mc ₁₂	Me ₁₃	Меµ	Me ₁₅	OAc	Eu(fod)3/sub
2	1.03	1.2	1.6*	0.47	0.8*	0.53	0.68	0.24	0.03	1.7	0.18
3	1.1	0.9	1.7	0.40	0.9	0.60	0.90	0.15	0.15		0.20

"All other protons are less shifted and/or unresolved.

*Estimated.

EXPERIMENTAL

M.ps were taken on a Thomas Hoover capillary m.p. apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer Infracord model 257. NMR were taken on Jeol JNM-C-60HL, Bruker WH-90 and Bruker HX-270 spectrometers using 5-10% soln in CDCl₃ with TMS as an internal standard. Mass spectra were recorded with a DuPont 21-491B instrument. $[\alpha]_D$ were taken on a Bellingham and Stanley polarimeter in CHCl₃ solns.

Isolation procedure of compounds 1, 2 and 3. Freeze-dried Heteroxenia fuscescens (60 g) was extracted during 48 hr with petrol-ether in a soxhlet to give 7 g crude extract. This extract was combined with the ether-extract of the aqueous freeze-dried emulsion (1g) and then chromatographed on a silica gel (Merck 7734) column. Elution with hexane gave 1 (200 mg); further elution with bexane-chloroform 1:1 gave first mainly acetate-3 (1.5 g) and then alcohol 2 (2.5 g). Compounds 2 and 3 were both purified from glycerides by distillation at 0.1-0.01 mm Hg. The homogeneity of compounds 2 and 3 was confirmed by: (a) TLC on Silicagel (Merck 5735) as well as aluminum oxide (Merck 5550) plates (PhH-EtOAc, petrol ether--CHCl, and hexane-acetone), and (b) VPC which was carried out on a 5% SE-30 on GCQ column (6ft, 1/8 in) at 160° (RT being 19 min and 8.5 min for compounds 2 and 3, respectively) and on a 10% OV-17 on GCQ column under the same conditions. Compound 1, b.p. 40°-50°/0.1 mm Hg; Found: M⁺ 204 (35%), C₁₃H₂₄ requires: 204; $[\alpha]_D = +58^{\circ} ([\alpha]_D \text{ of } (-) -\alpha - \text{murrolene} -53^{\circ}, 4^{\circ} \text{ and } [\alpha]_D \text{ for } (+) -\alpha - (1 - \alpha) - (1 - \alpha)$ murrolene +67°);⁴ p_{max} 830, 803 cm⁻¹; dihydrochloride (4), m.p. 85° (BtOH),²" [a]_D = +14°. Compound 2, b.p. 70°/0.03 mm Hg, m.p. 65°-70° (hexane), $[\alpha]_{D} = -20^{\circ}$ (Found: C, 81.85; H, =10.85, C15H24O requires: C, 81.76; H, 10.98%): mass spectrum see Scheme 2, NMR: 8 0.90 d (J = 7, Me12 and Me13), 1.70 s and 1.72 s (two vinyl Me groups), 5.32 m and 5.55 m (two vinyl protons). 3450, 1450, 1380, 1160, 1130, 1070 cm⁻¹. Compound 3, b.p. y me 110°-120°/0.1 mm Hg, m/e (%) 220 (0.7, M-CHz=C=O), 202 (12, M-CH3CO2H), 187 (6); p 101 1740, 1440, 1370, 1250, 1200, 1115, 1020 cm⁻¹.

Hydroboration of 2 (or 3) to diketone 5 and diol 6. To a soln

of 2 (100 mg) (or 3, 100 mg) in THF (10 ml) a soln of diborane in THF (Aldrich, 1.5 ml) was added. After stirring at rt for 1 hr, H_2O_2 (30%, 0.5 ml) and 3 N NaOH (1 ml) were added and the soln was beated to 40°-50° for 1 hr. Chloroform (25 ml) was then added and the organic layer washed with water several times, dried and evaporated to give 6 which was purified by chromatography to give low melting oily crystals; m/e (%) 238 (0.1), 220 (25), 202 (10), 195 (55), 177 (100), 159 (80), and 149 (90); NMR: 8 0.80-1.00 three doublets (J = 6, Me₁₂, Me₁₃ and Me₁₄), 1.58 s(Me₁₃), 3.44 t (J = 9 Hz, H-5) and 5.24 m (H-9).

Overnight hydroboration followed up by the same procedure as described above resulted in a triol which was directly oxidized by Jones reagent to give 5; an oil, ν_{max}^{max} 1705–1710 cm⁻¹, mass spectrum see Scheme 2. NMR: δ 0.68–1.05 all four Me's (the compound may be more than one stereoisomer).

Acknowledgement-We wish to express our appreciation to Dr. Y. Loya and Y. Benayahu for collecting the soft coral.

REP REPORTS

- ¹⁶Y. Kashman, E. Zadock and I. Néeman, Tetrahedron 30, 3615 (1974); ^bY. Kashman and A. Groweiss, Tetrahedron Letters 1159 (1977); ^cY. Kashman, M. Bodner, Y. Loya and Y. Benayahu, Isr. J. Chem. 16, 1 (1977).
- ²A. Zabza, M. Romanuk and V. Herout, Coll. Czech. Chem. Commun 31, 3373 (1966).
- ³" B. Vlahov, M. Halub and V. Herout, *Ibid.* 32, 822 (1967); **Natural Products Chemistry* (Edited by K. Nakanishi, T. Goto, S. Ito, S. Natori and S. Nozoe) Vol. 1, p. 163. Academic Press, New York (1974).
- ⁴A. J. Weinheimer, F. J. Schmitz and S. Ciereszko, Drugs from the Sea, (Edited by H. D. Freudenthal), p. 135. J. of Ocean Technology (1968).
- ⁵F. Bohlmann and R. Zeisberg, Org. Mag. Res. 7, 426 (1975).
- ⁴J. B. Stothers, Carbon-13 NMR Spectroscopy. Academic Press, New York (1972).
- ⁷K. Tori and T. Komeno, *Tetrahedron Letters* 1157 (1974); and refs therein.