7-HYDROXY (AND ACETOXY)-a-MULLOLENE FROM THE SOFT-CORAL HETEROXENIA FUSCESCENS

Y. KASHMAN^{*}, A. RUDI and N. GUTMAN-NAVEH

Department of Chemistry, Tel-Aviv University, Tel-Aviv, Israel

(Received in UK 18 August 1977; Accepted for publication 10 October 1977)

Abstract—The isolation and structural determination of three cadalane type sesquiterpenes from a soft coral is reported. The ¹³C NMR of these compounds namely $(+)$ -a-murrolene, 7-hydroxy, and 7-acetoxy-a-murrolene is discussed.

In continuation of our earlier studies¹ on the chemistry of soft-corals, we report on the isolation and structure determination of three interrelated sesquiterpenes of the cadalane type from Heteroxenia fuscescens (Octocorallia, Alcyonacea, Xeniidae).

Hexane extraction of freeze-dried Heteroxenia fuscescens (and of the aqueous emulsion collected during drying) followed by chromatographic separation resulted in the isolation of three compounds: an hydrocarbon (1) $C_{15}H_{24}$, an alcohol (2) $C_{15}H_{24}O$ and an acetate (3), $C_{17}H_{26}O_2$ in ca. 0.5, 0.8 and 2% dry weight respectively.

Compound 1, $[\alpha]_D = +58^\circ$, M⁺ 204 (C₁₅H₂₄, 35%), m/e 189 (M-CH₃, 10%) and 161 (M-iPr, 70%), is the major (>85% hydrocarbon content) hydrocarbon constituent. Its structure was confirmed to be $(+)$ - α -murrolene by its NMR spectrum, δ 0.73d and 0.79d (J = 7 Hz, iPr-Me groups), 1.60 brs (two vinyl Me groups) and 5.35 m (2H);
 13 C NMR (Table 1) and finally unequivocally by the preparation of its dihydrochloride (4).² (+)- α -Murrolene is one out of four possible isomers of the cadalane sesquiterpenes³ and has already been reported to be found in marine gorgonarians.⁴

The second compound to be eluted was the acetate 3. Compound 3 can be converted into alcohol 2 by reduction with LAH. The ¹H NMR spectrum of 3 indicates the existence of two 3-substituted double bonds (-C (Me)C=CH-, δ 1.52 brs 6 H and δ 5.20 m(2 H)) an isopropyl (δ 0.85 and 0.91 d) and a t-acetoxy group (δ 1.95s). These functional groups can be further confirmed by the ¹³C NMR spectrum (Table 1). Dihydroboration of the two double bonds of 3 followed directly by oxidation results in a diketone (5), in which both carbonyls absorb
at ν_{max} 1705–1710 cm⁻¹.² Based on this diketone and the above mentioned moieties compound 3 (and 2) is expected to be of the cadalane type.³ Furthermore one of the two double bonds, of 3, must be at Δ^9 (Scheme 1) whereas for the second double bond either the Δ^3 or the Δ^4 position can be considered.

Short hydroboration (1 hr at rt) converts 3 (or 2) to diol 6 in which only one double bond is attacked. A one proton signal adjacent to the incoming OH group is observed in the NMR spectrum of 6 at 8 3.44 as a triplet with a coupling constant of 9 Hz (in addition to the remaining vinylic proton at δ 5.35). A triplet with a

Scheme 1. a, B₆H₆, rt, 1 hr; b, B₂H₆, rt, 24 hr; c, HCl.

coupling constant of 9 Hz is best rationalized by coupling of the corresponding proton with two vicinal, to the OH. α , α' -axial protons. The best place for the OH group, which fulfills the above requirements, is at C-5 as shown by the following partial structure (a):

This means that the second double bond in 3 is at Δ^4 (placing the OH group at C-3, if Δ^3 would have been the location of this double bond, or at C-9, if the Δ° double bond would have been the first bond to be hydroborated. should both cause a different NMR pattern of CHOH).

The location of the acetoxy group of 3 (and hence of the OH at 2) has been assigned carbon-7 on the basis of the ¹H NMR spectrum recorded on a 270 MHz NMR instrument; the isopropyl proton signal appears in this spectrum as an heptet at δ 2.16 (J = 7.1 Hz) coupled by the two Me groups only. This finding is also in accordance with LIS experiments performed on 2 and 3 (Tables 1 and 2), as well as the suggested fragmentation pattern for the mass spectra of 2 and 5 (Scheme 2).

The ring fusion stereochemistry of 3 was established next. The ¹³C NMR spectrum, which is known to distinguish between cis and trans dekalins, is equivocal in this specific case because of the unpredictable influence of the double bonds.[†] Attempts which have been under-

[†]It is well known⁷ that upon introduction of a double bond into a 6-membered ring, the allylic carbons may be slightly shielded or deshielded, while the homoallylic carbons are either strongly shielded or, in some cases, little affected.

Scheme 2

taken to hydrogenate 3 resulted in mixtures. The ring fusion mode could however be assigned upon the 270 MHz NMR spectrum; almost all of the methylene and methine molecule protons gave rise to separate resonance lines: 1.72 brd $(J = 16.5 \text{ Hz}, 2 \text{ H})$, 1.84 brd $(J =$ 17 Hz, 1 H), 1.99 brd $(J = 16.5$ Hz, 1 H), 2.16 hep $(J =$ 7.1 Hz, 1 H), 2.34 brd (J = 16.5 Hz, 1 H), 2.37 m ($\Delta W_{1/2}$ = 8 Hz, 1 H), 2.71 dd $(J = 5.5$ and 17 Hz, 1 H), 3.00 m $(\Delta W_{1/2} = 10 Hz, 1 H)$, and 5.27 m (2 H).

The two relatively narrow signals at δ 2.37 and 3.00

Table 1. ¹³C Chemical shifts² of compounds 1-3

C atom	multiplicity	1	2	Y	LIS of 2 ⁿ
$C-12.13$	q	15.9	15.9	17.5	1.9
		21.3	17.5	18.5	1.5
$C-15$	q	21.5	21.1	20.3	0.7
$C-14$	q	23.7	24.1	24.0	0.3
$C-2^b$	t	(24.5)	24.3	24.7	1.1
C-8 _p	t	(24.6)	28.6	26.7	0.8
$C-3b$	t	30.4	31.0	31.0	2.9
$C-1c$	d	39.0	37.9	36.7	1.5
$C-6^\circ$	đ	26.5	33.3	31.7 ²	2.5
$C-11e$	đ	36.6	39.7	40.4	2.2
C-7		41.0d	74.8 _s	89.2s	6.7
$C-5.9$	d	121.1	119.2	120.0	1.7
		123.8	119.2	121.0	2.2
C-4.10	2	134.0	134.7	133.3	1.7
		135.8	137.2	135.5	1.7

"In ppm from internal TMS in CDCl₃. Parentheses indicate that assignments are not unambiguous.

Tentative assignment based on model monoterpene compounds,³ substitution effects⁶ (e.g. C-2 should be upfield shifted by a Me₁₅ y-effect) and the assumption that C-2 and C-3 should be less influenced by the C-7 substitution. Possible conformational mobility complicates the identification.

Assignments may be changed-see note b.

°COCH₃, 169.9 and 22.3.

^{*}Δδ values for Eu(fod)₃/2 ratio of 0.4.

 $(\Delta W_{1/2} = 8 Hz$ and $\Delta W_{1/2} = 10 Hz$ respectively) must belong to H-1 and H-6, the only methylene protons which are not part of a geminal pair $(J_{\text{geom}} \simeq 16{\text -}18 \text{ Hz})$.

If a trans-dekalin skeleton would be incorporated in compound 3 a dihedral angle of ca. 180° between H-1 and H-6 should result and consequently, a mutual coupling constant of 8-10 Hz should be measurable. At least H-1 is expected to be further split by the C-2 protons in the order of $J_{H-1/H-2(mx)} \simeq 7-10 Hz$ and $J_{H-1/H-2(mx)} \simeq 2-4 Hz$ causing a significant broadening of the H-1 signal up to $\Delta W_{1/2} \simeq 17-24$ Hz—which is not the case. The cis-fusion, however, does agree with the finding as the $J_{H-1/H-6}$ in this case is expected to be in the order of ca. 4-6 Hz only (the corresponding dihedral angle being about 60°).

The last structural feature which has to be accounted for is the stereochemistry at C-7. Each one of the two C-7 isomers $(7\alpha$ -OR and 7β -OR, R=H or Ac) can exist in two conformers: A—the conformer in which H-1 is axial towards the more substituted ring and B in which H-1 is equatorial towards this ring—as is known for cis-dekalin. Differentiation between the isomers is achieved by ¹³C NMR and ¹H NMR LIS-measurements (Tables 1 and 2). This leaves us with structures 7α -OR (A) and 7β -OR (B) the NMR spectra of which agree with the above results. However, inspection of Dreiding and CPK models of the isomers reveals that 7β -OR (B) is of low probability because of severe interactions of the axial iPr-group with the less substituted ring. Thus the 7α -OR seems to have the right configuration, namely, compound 3 should be 7acetoxy-a-murrolene (experiments conducted to convert either 2 or 3 into 1 have so far failed).

At last, it is worthwhile to mention the total high percentage of organic material in the Heteroxenia fuscescens (8-10% dry weight) which contains mainly a mixture of glycerides and sterols. In contrast to the diversity in terpenoid composition reported for other soft-corals, no significant changes of the organic components with place, depth, and time of collection, could be observed.

"All other protons are less shifted and/or unresolved.

^bEstimated.

EXPERIMENTAL

M.ps were taken on a Thomas Hoover capillary m.p. apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer Infracord model 257. NMR were taken on Jeol JNM-C-60HL, Bruker WH-90 and Bruker HX-270 spectrometers using 5-10% soln in CDCl₃ with TMS as an internal standard. Mass spectra were recorded with a DuPont 21-491B instrument. $[a]_D$ were taken on a Bellingham and Stanley polarimeter in CHCl3 soins.

Isolation procedure of compounds 1, 2 and 3. Freeze-dried Heteroxenia fuscescens (60 g) was extracted during 48 hr with petrol-ether in a soxhlet to give 7g crude extract. This extract was combined with the ether-extract of the aqueous freeze-dried emulsion (1g) and then chromatographed on a silica gel (Merck 7734) column. Elution with hexane gave 1 (200 mg); further elution with hexane-chloroform 1:1 gave first mainly acetate-3 $(1.5 g)$ and then alcohol 2 $(2.5 g)$. Compounds 2 and 3 were both purified from glycerides by distillation at 0.1-0.01 mm Hg. The homogeneity of compounds 2 and 3 was confirmed by: (a) TLC on Silicagel (Merck 5735) as well as aluminum oxide (Merck 5550) plates (PhH-EtOAc, petrol ether-CHCl₃ and hexane-acetone), and (b) VPC which was carried out on a 5% SE-30 on GCQ column (6 ft, 1/8 in) at 160° (RT being 19 min and 8.5 min for compounds 2 and 3, respectively) and on a 10% OV-17 on GCQ column under the same conditions. Compound 1, b.p. 40°-50°/0.1 mm Hg; Found: M⁺ 204 (35%), C₁₃H₂₄ requires: 204: $[\alpha]_D$ = +58° ($[\alpha]_D$ of (-)- α -murrolene -53°,^{α} and $[\alpha]_D$ for (+)- α murrolene +67°);⁴ ν_{max} 830, 803 cm⁻¹; dihydrochloride (4), m.p. 85° (EtOH).^{2*a*} [α]_D = +14°. Compound 2, b.p. 70°/0.03 mm Hg, m.p. 65°-70° (hexane), $[\alpha_{\text{D}} = -20^{\circ}$ (Found: C, 81.85; H, =10.85, C₁₃H₂₆O requires: C, 81.76; H, 10.98%): mass spectrum see Scheme 2, NMR: 8 0.90 d $(3 = 7, Me_{12}$ and Me₁₃), 1.70 s and 1.72 s (two vinyl Me groups), 5.32 m and 5.55 m (two vinyl protons). 4 3450, 1450, 1380, 1160, 1130, 1070 cm⁻¹. Compound 3, b.p. ייים 110°-120°/0.1 mm Hg, m/e (%) 220 (0.7, M-CH₂-C=O), 202 (12, M-CH₃CO₂H), 187 (6); $\nu_{\text{max}}^{\text{max}}$ 1740, 1440, 1370, 1250, 1200, 1115, 1020 cm^{-1} .

Hydroboration of 2 (or 3) to diketone 5 and diol 6. To a soln

of 2 (100 mg) (or 3, 100 mg) in THF (10 ml) a soln of diborane in THF (Aldrich, 1.5 ml) was added. After stirring at rt for 1 hr, H2O2 (30%, 0.5 ml) and 3 N NaOH (1 ml) were added and the soln was heated to 40°-50° for 1 hr. Chloroform (25 ml) was then added and the organic layer washed with water several times, dried and evaporated to give 6 which was purified by chromatography to give low melting oily crystals; m/e (%) 238 (0.1), 220 (25), 202 (10), 195 (55), 177 (100), 159 (80), and 149 (90); NMR: 8 0.80-1.00 three doublets $(J = 6, Me_{12}, Me_{13})$ and Me_{14}), 1.58 s(Me₁₅), 3.44 t (J = 9 Hz, H-5) and 5.24 m (H-9).

Overnight hydroboration followed up by the same procedure as described above resulted in a triol which was directly oxidized by Jones reagent to give 5; an oil, $\nu_{\text{max}}^{\text{max}}$ 1705-1710 cm⁻¹, mass spectrum see Scheme 2. NMR: 8 0.68-1.05 all four Me's (the compound may be more than one stereoisomer).

Acknowledgement-We wish to express our appreciation to Dr. Y. Loya and Y. Benavahu for collecting the soft coral.

BUTTERWIPE

- ¹"Y. Kashman, E. Zadock and I. Néeman, Tetrahedron 30, 3615 (1974); ⁸Y. Kashman and A. Groweiss, Tetrahedron Letters 1159 (1977); 'Y. Kashman, M. Bodner, Y. Loya and Y. Benayahu, Isr. J. Chem. 16, 1 (1977).
- ²A. Zabza, M. Romanuk and V. Herout, Coll. Czech. Chem. Соттия 31, 3373 (1966).
- 3ªB. Vlahov, M. Halub and V. Herout, Ibid. 32, 822 (1967); ^a Natural Products Chemistry (Edited by K. Nakanishi, T. Goto, S. Ito, S. Natori and S. Nozoe) Vol. 1, p. 163. Academic Press, New York $(1974).$
- A. J. Weinheimer, F. J. Schmitz and S. Ciereszko, Drugs from the Sea, (Edited by H. D. Freudenthal), p. 135. J. of Ocean Technology $(1968).$
- ³F. Bohlmann and R. Zeisberg, Org. Mag. Res. 7, 426 (1975).
- ⁴J. B. Stothers, Carbon-13 NMR Spectroscopy. Academic Press, New York (1972).
- ⁷K. Tori and T. Komeno, Tetrahedron Letters 1157 (1974); and refs therein.